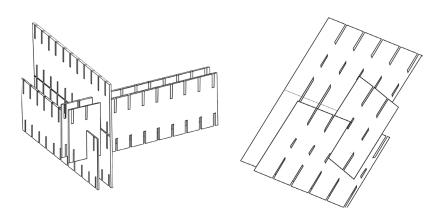
ENSA, Equipos Nucleares, S.A. S.M.E.


empresa **ENSA** está reconocida entre los más importantes fabricantes multisistema de componentes primarios para centrales nucleares y tiene capacidad para participar en la fabricación de los componentes primarios, de las futuras centrales nucleares del tipo que el mercado y la demanda requieran.

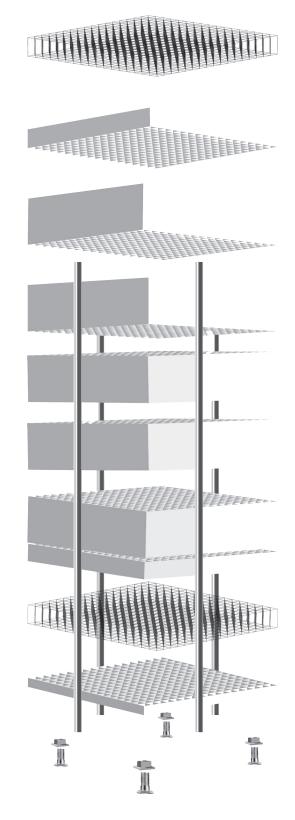
Al mismo tiempo que ha adquirido este reconocimiento mundial para el suministro de los componentes primarios, ENSA ha ido fortaleciendo su compromiso y experiencia en el suministro de componentes para almacenamiento combustible gastado, ya bastidores piscinas contenedores almacenamiento v/o transporte, propios licenciados para ambos productos.

En lo que respecta a los bastidores de almacenamiento en piscinas, ENSA inició su actividad en este campo a principios del año 86 como fabricante de bastidores de alta capacidad diseñados por otros sistemistas, suministrando dichos bastidores para el reracking

de las primeras piscinas de las centrales españolas que necesitaban ampliar la capacidad de sus piscinas. En ese momento se contó con la ventaja de un entorno industrial local favorable y en concreto con la colaboración de ENRESA, lo que permitió posteriormente abordar el mercado internacional. En paralelo con esta actividad de "fabricante" ENSA fue desarrollando su propio diseño hasta llegar a la actual solución, que tiene patentada,

	NPP	NPP Type	Country	Polson Material	Total Qty of Cells	Desing & Licensing	Code
1986	Trillo		Spain	Welded Borated SS (NO HIGH DENSITY)	592		AS Merk Blatter
	Vandellós 2			SS+Boraflex (AI)	592	Others	
1992	Sizewell B		United Kingdom	(NO HIGH DENSITY)	594		ASME
	Almaraz 1	PWR	Spain		1.804		
	Almaraz 2				1.804		
1993	Asco 1				1.421		
	Asco 2				1.421		
	Kori 3		South Korea		450		
1996	Philisburg 2 (KKP)		Germany	Welded Borated SS	768		KTA
	Trillo				533		
1997	Vandellós 2	1			1.022		
	Garoña	BWR	Spain		2.600		
1998	Zorita				406		
	Ascó I & II	PWR			60		
2000	Koeberg 1&2	ĺ	South Africa	Borated SS	420		
2002	Lungmen 1&2		R.P.China Taiwan	SS+Borai (AI)	6.152		
2003	Olkiluoto I	BWR	Finland	Non welded Borated SS	2.610		ASME
2004	Kuosheng		R.P.China Taiwan	SS+Borai (AI)	1.578		
	Yonggwang	PWR	South Korea	REGION I: Borated SS	2.604		
2006				REGION II: Non welded Rorated SS			
2008	Ling Ao]	R.P.China		1.656		
2007	G.E-ESBWR	ESBWR	USA	Borated SS	(3504)	ENSA	
2009	Cofrentes		Spain	Non welded	3.084		
	Olkiluoto II	BWR	Finland	Borated SS	1.140		
	Olkiluoto II	ì	_	Borated SS	1.890		RCCM
2014	Cattenom, Nogent, Penly		France				
	Cattenom,		France	FRESH: Plain SS			
2014	Cattenom,	PWR		FRESH: Plain SS REGION I: Borated SS	2 270		
	Cattenom, Nogent, Penly	PWR	South Korea		2.270		ASME
2015	Cattenom, Nogent, Penly Shin Hanul	PWR BWR		REGION II: Borated SS REGION III: Non welded	2.270		ASME

y que se denomina "Interlock Cell Matrix". Este diseño es altamente competitivo, siendo una de sus características su sencillez de fabricación, y sin duda ha contribuido a que ENSA haya tenido éxito como diseñador, fabricante e instalador.


ENSA ha suministrado bastidores en España, Francia, Finlandia, Taiwán, Corea, China y ha licenciado en los Estados Unidos, con GE-Hitachi para el diseño de reactor ESBWR.

Como se puede ver en la tabla 1, ENSA ha suministrado bastidores para elementos combustibles gastados para 26 reactores nucleares distintos, de los cuales 9 son en España y 17 en el mercado internacional. ENSA ha fabricado la mavoría (véase la misma tabla) de las tecnologías de bastidores que existen en el mercado y actualmente tiene patentado, en la mayoría de los países, un diseño llamado "Interlock Cell Matrix", cuyas características constructivas fundamentales se muestran en la figura 1.

El diseño Interlock Cell Matrix consiste en un emparrillado de chapas cortadas con mucha precisión por láser, que se unen en varias alturas hasta conformar el bastidor. Dichas chapas son de acero inoxidable en su parte perimetral, y las del interior son de acero inoxidable borado. Las soldaduras que dan la rigidez al conjunto se realizan sólo en la primera altura y en las chapas perimetrales.

hacer también Queremos una breve reseña, por su importancia y peso específico en la oferta de servicios de ENSA, a la tecnología que ha desarrollado para el montaje de los bastidores cuando se requiere un cambio (reracking) de los mismos, en el caso de piscinas de centrales operación. que están en ENSA, de forma distinta suministradores otros fundamentalmente en Estados Unidos, ha desarrollado una tecnología que realiza la instalación por medio de control remoto sin necesidad de usar submarinistas.

Esto permite reducir la dosis del personal a la mitad que con los submarinistas y la cantidad de residuos generados durante las operaciones exponencialmente.

En cuanto a los contenedores para almacenamiento, transporte, o duales (almacenamiento y transporte), ENSA tiene experiencia tanto en el mercado nacional como en el internacional.

Antes de mencionar la experiencia de ENSA en este sector cabe repasar las dos tecnologías principales contenedores de combustible empleadas en la actualidad:

- Contenedores hormigón (sistema tipo "cánister") que consisten principalmente en una cápsula de acero inoxidable con tapa soldada y con pared de bajo espesor, que almacena los combustibles gastados. A su vez, esta cápsula está envuelta por una envolvente de gran espesor que suele estar compuesta de chapas de acero al carbono que contienen un hormigón de composición especial (principal elemento de blindaje).
- Contenedores metálicos de doble propósito, compuestos de un cuerpo principal que generalmente es un vaso (virola soldada a un fondo) metálico que

contiene el bastidor con los combustibles. Suele llevar dos o más tapas empernadas al cuerpo principal y también una envolvente unida al propio cuerpo que contiene un polímero que actúa como blindaje para los neutrones.

(La figura 2 es un ejemplo de este tipo de contenedor).

Como se puede ver en la Tabla 2, en la experiencia de ENSA predomina el mercado nacional de suministro de contenedores, donde ENSA es el principal suministrador de la empresa ENRESA. ENSA suministra contenedores metálicos de doble propósito de diseño propio a las centrales de Trillo, Almaraz, y Santa María de Garoña, estando la empresa también encargada de las cargas de contenedores. otro lado ENSA fabrica y carga contenedores de hormigón diseñados por terceras empresas para las centrales de José Cabrera y Ascó.

Inner Shell & Botton: Carbon Steel Forging Primary Lid: Carbon Steel Forging Secondary Lid: Carbon Steel Plate Outer Shell: Carbon Steel Plate Basket: Stainless Steel Basket Profiles: Aluminium Neutron Shield: Resin Plymer O-Ring: Metallic Double Ring High strength Trunnions & Bolts

Epoxy Painting

ENSA comenzó el desarrollo de un contenedor metálico para la central de Trillo en 1991, de la mano de la compañía norteamericana NAC (Nuclear Assurance Corporation). En 1992 ENRESA encomendó a ENSA el diseño y apoyo al licenciamiento de un contenedor capaz de almacenar y transportar el combustible gastado de la central nuclear Trillo, basado en el diseño NAC-STC. De esta colaboración surgió el contenedor DPT del que hay actualmente 32 unidades cargadas en el ATI de la central. Por resolución de la Dirección General de la Energía de fecha 23 de octubre de 1997 se aprobó el contenedor de doble propósito ENSA-DPT (para el transporte y almacenamiento combustible), modelo de "bulto" para transporte tipo B(U)F de acuerdo con la reglamentación española de transporte. Esta fue la primera vez que se ha licenciado un contenedor metálico de almacenamiento y transporte de combustible irradiado en seco en España. El contenedor DPT se compone esencialmente de dos virolas de acero inoxidable entre las cuales hay una capa de plomo. En su interior el bastidor se compone de tubos de acero inoxidable unidos mediante una estructura de discos de acero inoxidable y discos de aluminio.

Posteriormente, en la primera década de los años 2000 ENSA desarrolló un nuevo diseño de contenedor con el propósito de dar respuesta a los requisitos cada vez más exigentes de las plantas, un aumento de la capacidad del

		Qty.
ENUSA		15
Nutech		8
NAC International Inc.		1
Vectra		1
NAC International Inc.		5
WAC International Inc.		1
Nutech		5
ENUSA		3
ENRESA	1990	1
		1
ENUSA	1993	15
ENRESA (Design)	1998	2
Hitachi	2001	1
	2001	1
Transnuclear West	2000	1
NAC International Inc.		2
Transnuclear West	2001	1
Hitachi		1
Transnuclear West	2003	29
	2000	6
ENRESA	2003	4
EINNESA	2005	4
	2007	6
Transnuclear West	2007	20
		1
Hoitec International	2004	12
Troitee international		10
	2011	4
ENRESA	2009	6
	2011	4
Hoitec International		10
Tronces international	2010	10
ENSA		1
ENRESA	2012	5
CGNPC- URC	2013	1
Transnuclear Int.		4
Hoitec International	2014	7
		7
ENRESA	2015	10
	2017	4
Hoitec International		4
	2018	10
		10
ENRESA	2020	24
		44

contenedor y una búsqueda de competitividad. De este esfuerzo surgió el contenedor ENUN. Además de las razones mencionadas, el contenedor ENUN da una respuesta adecuada al escenario

Tabla 2: Experiencia de ENSA en contenedores de combustible

Equipment	Туре	Model	NPP	Owner / User	country	Delivery	Fuel	Designer
Cask		MCC4			Spain	1985	Fresh Fuel	Westinghouse
Canister	Dry Shielded	Nuhoms system	H.B. Robinson Nuclear Generating Station	Carolina Power & Light	USA	1987		Nutech
			Surry Power Station	Dominion Resources Inc. (VEPCO)	USA	1990		NAC International Inc
Cask	Transfer		Oconee Nuclear Station	Duke Energy	USA	1989	Spent Fuel	Vectra
	Transport				USA :	1990	Spenerae	NAC internacional Inc
					USA	1990		
Canister	Dry Shielded		Oconee Nuclear Station	Duke Energy	USA	1989-1990		Nutech
		MCC4			Spain	1990	Fresh Fuel	Westinghouse
	Scale model 1:4	ENSA-NAC			Spain	1990	Spent Fuel	Ensa
		ST26	Central Nuclear Almaraz I	CNAT	Spain	1992-1997	Speneraei	NAC
Cask		MCC4			Spain	1993	Fresh Fuel	Westinghouse
	Dual Purpose	ENSA-DPT	Central Nuclear Trillo I	CNAT	Spain	1999-2001		Ensa
	Scale model 1:3	HIEN 69			Japan	2001		Hitachi- Ensa
Basket	Prototype 1:1	HIEN 05			Japan	2001		Transnuclear West
	Transfer	NUHOMS OS-197-1	Susquehanna Steam Electric Station	Pennsylvania Power & Light	USA	2002	Spent Fuel	
Cask	Dual Purpose	NAC-STC	Daya Bay Nuclear Power Plant	CNNC Everclean	China	2003		NAC International Inc.
Cask	Transfer	HUHOMS OS-197-1	San Onofre Nuclear Generating Station	Southerm California Edison	USA	2002		Transnuclear West
	Prototype 1:1	HIEN 69FA			Japan	2003		Hitachi- Ensa
Failed Fuel Canister	Dry Sorage	For 24PT1 DSC cask	San Onofre Nuclear Generating Station	Southern California Edison	USA	2003	Damaged Fuel	Transnuclear Int.
	Dual Purpose	ENSA-DPT	Central Nuclear Trillo I	CNAT	Spain	2002-2004		Ensa Transnuclear Int.
				CNAT	Spain	2004-2005		
				CNAT	Spain	2006-2007		
Cask				CNAT	Spain	2009-2011		
		TN-68	Peach Botton Atomic Power Station	Exelon	USA	2009-2012		
	Transfer	HI-TRAC 100Z		Unión Fenosa	Spain	2010		Holtec International Ensa Holtec International
	Overpack	HI-STORM 100Z	Control Nuclear Land California	Unión Fenosa	Spain	2010		
Canister	Multi Purpose	MPC-32Z	Central Nuclear José Cabrera	Unión Fenosa	Spain	2010	S	
	Overpack	HI-SAFE 100Z		Unión Fenosa	Spain	2013	Spent Fuel	
_		ENSA-DPT	Central Nuclear Trillo I	CNAT	Spain	2012-2014		
Cask	Dual Purpose			CNAT	Spain	2014-2016		
	Overparck	HI-STORM 100S		ANAV	Spain	2012		
Canister	Multi Purpose	MPC-32	Central Nuclear Ascó I & II	ANAV	Spain	2012		
	Scale Model 1/3	Ensa ENUN 32P			Spain	2010		
61	Dual Purpose	Ensa ENUN 52B	Central Nuclear Garoña	NUCLENOR	Spain	2014-2017]	
Cask		Ensa ENUN 24P	Daya Bay, Ling Ao, Qinshan phase II	CGNPC- URC	China	2016		
İ		TN-81	Vendellós I	ENRESA	Spain	2016	Vitrified Waste	Transnuclear Int.
Canister	Multi Purpose	MPC 32	0	ANAV	Spain	2016		
Carl	Overpack	HI-STORM 100	Central Nuclear Ascó I & II	ANAV	Spain	2016	1	Holtec Interational
Cask	Dual Purpose	Ensa ENUN 32P	CN Trillo I, CN Ascó I & II, CN Vandellós II	CNAT / ANAV	Spain	2017-2019		Ensa
	Multi Purpose	MPC 32	Central Nuclear Ascó I & II	ANAV	Spain	2018	Spent Fuel	Holtec International
1		HI-STORM 100		ANAV	Spain	2018		
Canister		MPC 32		ANAV	Spain	2019-2020		
		HI-STORM 100		ANAV	Spain	2019-2020		
Cask	DI.D.	Ensa ENUN 32P	Central Nuclear Almaraz	CNAT	Spain	2025	1	_
	Dual Purpose	Ensa ENUN 52B	Central Nuclear Garoña	NUCLENOR	Spain	2025		Ensa
						_		

planteado en el actual plan de gestión de residuos por el que los combustibles gastados se transportarían al ATC (Almacén Temporal Centralizado) para ser posteriormente trasferidos a cápsulas en

una celda caliente. Ensa ha obtenido autorización de uso (aprobación de licencia) de tres diseños del contenedor ENUN: el ENUN 32P, el ENUN 52B y el ENUN 24P.

El contenedor ENUN consiste principalmente en una virola compuesta de una o dos forjas de acero al carbono que van soldadas entre sí y soldadas al fondo del contenedor (también forja de acero al carbono). Además, tiene dos tapas empernadas (también de forja de acero al carbono). El cuerpo del contenedor está rodeado perimetralmente por unos perfiles de aluminio extruido en cuyo interior se vierte un polímero, y que tiene propiedades de blindaje neutrónico. Finalmente. el conjunto de perfiles perimetrales queda sujeto por una envolvente de chapa de acero al carbono que lleva un recubrimiento de pintura epoxi de fácil descontaminación.

En el interior, el bastidor del contenedor está compuesto chapas de de acero inoxidable que conforman un emparrillado (similar al de los bastidores de combustible mencionados anteriormente) y que va rodeado por perfiles de aluminio extruido atornillados que le dan al conjunto su forma cilíndrica y favorecen la extracción del calor. A su vez cada celda lleva en su interior un tubo cuadrado de un material compuesto de matriz de aluminio que contiene una cierta concentración de carburo de boro, que asegura que los combustibles serán almacenados en condición subcrítica (sin reacción nuclear). Dichos tubos cuadrados se fabrican a partir de chapas unidas mediante soldadura.

El contenedor ENUN puede ser adaptado a las necesidades de cada planta. Así por ejemplo en el caso de Trillo y Almaraz el contenedor ENUN 32P tiene capacidad para 32 elementos combustibles PWR, y en la central de Santa María de Garoña el contenedor ENUN 52B tiene capacidad para 52 elementos BWR. El contenedor ENUN está actualmente en

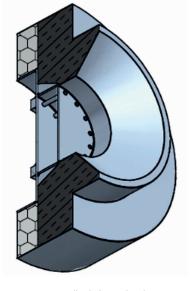
uso en la central de Trillo y de Almaraz. Adicionalmente hay cargas previstas en 2021 para la central de Santa María de Garoña. ENSA cuenta con contratos de suministro de contenedores ENUN para dichas centrales: Trillo (14 contenedores ENUN 32P), Almaraz (20 contenedores ENUN 32P) y Santa María de Garoña (49 contenedores ENUN 52B).

Además de los contenedores, ENSA también diseña y fabrica los equipos auxiliares empleados para su manejo, como por ejemplo, la cuna de transporte, el yugo de carga, el equipo de secado e inertizado, los limitadores de impacto, etc. Los limitadores de impacto proporcionan una defensa frente a choques del contenedor.

El mercado de exportación de contenedores presenta grandes retos para ENSA. En los Estados Unidos el mercado ha evolucionado a contenedores de hormigón, con contadas excepciones como el caso de la central de Peach Bottom para la que ENSA fue adjudicataria en 2007 del suministro a AREVA/TN de 20 contenedores tipo TN68

Figura 4. Montaje del bastidor

En China ENSA ha conseguido adaptar el diseño de su contenedor ENUN requisitos específicos del regulador chino, siendo resultante de este proceso el contenedor ENUN 24P. Este contenedor tiene las particularidades de que en el bastidor se ha implementado una separación entre los combustibles que mejora las propiedades de criticidad y por otro lado se ha utilizado un sistema de manejo basado en un muñón tipo "hembra" para permitir la reducción de diámetro del limitador de impacto, una protección adicional que lleva



contenedor en su modalidad de transporte.

Europa, con alguna En excepción se sigue acopiando contenedores metálicos, principalmente, pero exportación para ENSA del contenedor ENUN está siendo complicada al tratarse de un mercado maduro en el que ya hay implementadas soluciones tecnológicas de otros diseñadores.

En Japón ENSA inició la participación en el diseño y fabricabilidad de un contenedor metálico de doble propósito para 69 elementos BWR (HIEN), de acero al carbono y pared simple, junto con la compañía japonesa Hitachi Ltd en enero

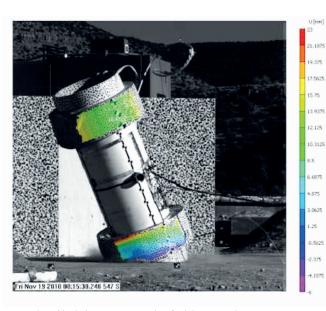


Figura 7. Detalle de limitador de impacto y ensayo de caída de la maqueta escala 1/3 del contenedor ENUN

de 2002. Este contenedor ha sido licenciado en Japón por Hitachi Ltd.

La participación de ENSA en el diseño estuvo enfocada a la aportación de su experiencia en el diseño, en las fases preliminares de cálculos térmicos y estructurales, en la verificación de los cálculos finales mecánicos y térmicos, así como en todas las soluciones de diseño que se han ido utilizado hasta llegar a su definición final. El desarrollo fue exitoso y TEPCO

(la eléctrica japonesa) adjudicó a Hitachi el suministro de 50 contenedores desde 2011 hasta el 2020. La siguiente tabla resume las características de los contenedores de ENSA.

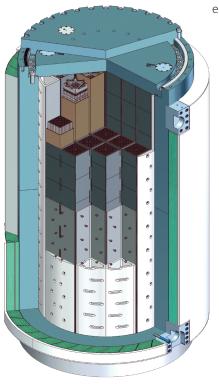


Figura 6. Contenedor ENUN 24P y detalle del concepto de muñón tipo "hembra".

Tabla 3. Características de los contenedores de ENSA

		ENSA-DPT	ENUN 32P	ENUN 52B	ENUN 24P
Purpose	Storage Transport	Storage Transport	Storage Transport	Storage Transport	Transport
Capacity (FA)	69	21	32	52	24
Fuel Types	BRW	PRW	PRW + NFH	BWR	PWR
Loaded Weight- Storage Conditions (Tons)	121	105	120	72	-
Overall Length- Storage Condition (m)	5.3	5	5	4.8	-
Overall Cross Section- Storage Condition (m)	2.5	2.4	2.7	2.1	-
Distance between Trunnions (m)	2.8	2.4	2.8	2.2	2.5
Loaded Wight w/Impact Limiters Transport Condition (Tons)	132	113	137	82	121
Overall Length w/Impact limiters Transport Condition (m)	6.8	6.7	8.3	7.6	7.9
Overall Cross Section w/Imact Limiters Transport Condition (m)	3.6	3.2	3.8	3.2	3.3
Heat Rejection (kW)	12.1	27.3	36.2	13	39.3
Maximum Burnup (GWd/MTU)	40	49	65	37.5	57
Maximum Enrichment U-235 (%)	3.1	3.7	49	3	5
Minimum Cooling Time (years)	18	9	7	22	3
Body Material	CS	SS / Lead / SS	CS	CS	CS
Basket Material	BSS + AI	SS + AI + MMC	SS + AI + MMC	SS + AI + MMC	SS + AI + MMC
Gamma and Neutron Shield	CS + Resin	SS/Lead/SS+Resin	CS + Resin	CS + Resin	CS + Resin
Lids	Triple Lid (CS)	Double Lid (SS)	Double Lid (CS)	Double Lid (CS)	Double Lid (CS)
Cask Sealing	Double Metallic O-rings in lids	Two Single Metallic O-rings in lids	Double Metallic O-rings in lids	Double Metallic O-rings in lids	Double Metallic O-rings in lids

CS: Carbon Steel SS: Stainless Steel BSS: Borated Stainless Seel MMC: Metal Matrix Composite

Toda la información incluida en este reportaje técnico ha sido facilitada por ENSA